
Bachelor’s Thesis

Test-Driven Web Development
— A Case Study With Django —

by

Philipp Giese

Potsdam, June 2010

Supervisors

Prof. Dr. Christoph Meinel

Martin Wolf, M.Sc.

Internet-Technologies and Systems Group

Disclaimer

I certify that the material contained in this dissertation is my own work and does not con-
tain significant portions of unreferenced or unacknowledged material. I also warrant that the
above statement applies to the implementation of the project and all associated documenta-
tion.

Hiermit versichere ich, dass diese Arbeit selbständig verfasst wurde und dass keine anderen
Quellen und Hilfsmittel als die angegebenen benutzt wurden. Diese Aussage trifft auch für
alle Implementierungen und Dokumentationen im Rahmen dieses Projektes zu.

Potsdam, June 25, 2010

(Philipp Giese)

ii

Kurzfassung
In dieser Arbeit werde ich als erstes in das Thema der Testgetriebenen Entwick-

lung einführen und dabei die Vorteile dieses Ansatzes Software zu schreiben her-
vorheben. Im Anschluss stelle ich die Testumgebung von Django vor und bew-
erte diese, indem ich darlege, wie sie uns in der Entwicklung des Bachelorpro-
jekts “Sendinel” unterstützt hat. Zum Schluss führe ich in die Testumgebung Se-
lenium ein und zeige, wie diese genutzt werden kann, um die Teile von Web-
Applikationen zu testen, die von der Django Testumgebung nicht abgedeckt wer-
den.

Abstract
This thesis will first give a brief introduction to Test-Driven Development high-

lighting the advantages of that approach in writing software. Afterwards I will
present the Django test suite and evaluate it by pointing out how we used it dur-
ing the development of our bachelor project called “Sendinel”. At the end I will
introduce the Selenium test framework showing how it can be used to test the
parts of a web-application that are not covered by the Django test suite.

iii

Contents

Contents

1 Introduction 1
1.1 What does Test-Driven Development mean . 1
1.2 Contributions . 1

2 Test-Driven Development 2
2.1 The word “Test” . 2
2.2 The Development Cycle . 3
2.3 How to write tests . 4
2.4 Development Patterns . 5

2.4.1 Fake it! . 5
2.4.2 Obvious Implementation . 6
2.4.3 Triangulation . 6

3 A Case Study 6
3.1 The Sendinel-Project . 6
3.2 Choosing the right Framework . 7

4 Test-Driven Development with Django 8
4.1 The Django Web-Framework . 8

4.1.1 The MVC-Pattern . 8
4.1.2 How Django implements MVC . 9

4.2 Docstring Testing . 10
4.2.1 How testing with doctest works . 10
4.2.2 Problems with dependence . 11
4.2.3 Pros and Cons of Docstring-Testing . 14
4.2.4 Evaluation of doctest . 14

4.3 Unit Tests with Django . 15
4.3.1 Assertions . 15
4.3.2 Fixtures . 16
4.3.3 Exception Test . 17
4.3.4 All Test . 18
4.3.5 Evaluation of Django Unit Tests . 18

4.4 Organizing the Tests . 19
4.5 Evaluation of the Django Test-Suite . 20

5 Front-End Testing With Selenium 21
5.1 Why use Selenium . 22
5.2 The design of Selenium . 22
5.3 Selenese . 23
5.4 Evaluation of Selenium . 24

6 Conclusion 25

Bibliography 26

iv

1 Introduction

1 Introduction

Modern software development more and more moves away from standard desktop applica-
tions as they are hard to maintain and the developers have to struggle with being compatible
to a variety of operating systems. The internet has opened up new possibilities for application
developers. With powerful server computers and highly interactive front-end technologies as
JavaScript, CSS and HTML5 it is now possible to build web-applications with the look and
feel of a desktop application. It also enables developers to update their software more often,
as the end-user does not need to struggle with the installation of updates. Once installed on
the server system they are immediately available to all users.

But because it is now possible to have large systems in form of a web-application, it becomes
even more important to have these systems available all the time. Automated testing and Test-
Driven Development helps developers to ensure that their software works under (almost) all
conditions.

1.1 What does Test-Driven Development mean

Test-Driven Development is an approach in writing software, where the developer does not
write any line of code until a test for this particular piece of code exists. To most developers,
that are new to this methodology, this appears paradox at first glance. How do you write tests
for code that is not written yet? But it is this paradox that opens up new ways. If you write
tests for your code before you implement it, you have to start to think about what you want
to achieve before you struggle with the implementation. You also start “working” with your
code, meaning that when you write tests, you imagine the perfect interface for the operations
you want to implement and start telling yourself a story about how the operation will work
from the outside. Maybe not all of the stories will become true in the end, but here you have
the chance to start with the best-possible application program interface (API), than to make
things complicated right from the start. [1]

1.2 Contributions

There are a lot of different testing frameworks available. Many of them are collectively known
as xUnit. Below you find three representatives for other testing frameworks. All these frame-
works resemble in design and code structure. You can define rules for your code using as-
sertions and in some way group and organise your test cases through your project and run
either all or particular ones.

• SUnit for Smalltalk1

• JUnit for Java2

• RSpec for Ruby on Rails3

1http://sunit.sourceforge.net/
2http://www.junit.org/
3http://rspec.info/

1

http://sunit.sourceforge.net/
http://www.junit.org/
http://rspec.info/

2 Test-Driven Development

In the following sections I will first give a theoretical overview of Test-Driven Development,
pointing out what Test-Driven Development means and how you can build applications us-
ing this methodology. I will also give some aid for those who are new to Test-Driven Devel-
opment showing some development patterns that help you to write tests and deriving the
correct application code of them.

Subsequently I will shortly introduce Sendinel – the system we developed – and afterwards
describe the test framework provided by Django, pointing out how we used it during the
development.

In the last part you will find a section about the Selenium test framework which can be used
as an add-on to the Django test suite to better test the front-end of web-applications.

2 Test-Driven Development

2.1 The word “Test”

test [verb] “Take measures to check the quality, performance, or reliability of (something),
esp. before putting it into widespread use or practice.”

If we map this definition to the work of a software developer we can see some analogies.
Software developers also need to evaluate the code they have written before they can release
a piece of software. This is not how Test-Driven Development works. Testing the changes
you have made to your code is not the same, as having automated tests. This way you might
not have thought about what goals you want to achieve before you implement new features.

Test [noun] “A procedure leading to acceptance or rejection.”

This definition more likely describes what the essence of Test-Driven Development is. It is
a procedure, where you first think about what you want to do, then figure out the tests that
assure, that the code works the way it is intended to work and finally write the real imple-
mentation.

So why does the word feel different when we are using it as a verb or as a noun. The psy-
chological part is different. If you test your software after you have implemented something
errors produce stress. Now you have to have a look on everything you did in the past min-
utes or hours and search for the error. If this happens more often, developers tend to test
less to reduce their personal stress level. Automated tests help to lower this level. Defining
tests first gives developers a safety net. Whenever a developer reaches a situation where he
asks himself whether he has broken something, he can run the tests. If all tests pass he can be
sure that everything works fine. This reduces stress, thus the developer feels better and that
encourages him to test more often.

2

2 Test-Driven Development

2.2 The Development Cycle

When you develop test-driven you will go through five stages as shown in Figure 1. The first
step is to write a small and above all atomic test. After implementing the test you run the test
runner and see the newly added test fail. Why do that? If, for example, you are working in
a team, it may happen that certain functionality has already been implemented by someone
else or even by yourself. So if you run the test runner on a newly added test and see the test
pass than you have to step into the code and search for a reason why. The most common
reasons are the following two:

• The functionality has already been implemented

• The test case is incorrect and needs to be refactored

1. Add a
little test

2. Run all
tests and

fail

3. Make a
change

4. Run the
tests and
succeed

5. Refactor
to remove
duplication

Figure 1: The development cycle of a Test-Driven Development process [1]

After you have seen your test fail you implement the code as simple as possible to get the
test pass. In Section 2.4 you find some patterns that help to figure out how to implement the
code in the right way. For example, if you expect a function to return the number five, than
implement the function to return the constant 5 (also see Section 2.4.1).

At this point one could wonder how we will derive working code from that development
cycle, if we only fake implementations so that our test cases do not fail. This is where the
last stage of the cycle comes into play. We now have to refactor to remove duplication. In our
example we have a duplication of the number five in our test case and the actual code. We can
remove the duplication by adding a parameter to the function and returning that parameter.
The correct way, of course, would have been to first add the parameter in the test case and
afterwards in the implementation.

If you have removed all duplicate code and the test still passes, you have reached a point
where you can tell yourself that you are done. This is another advantage of Test-Driven
Development. You know when you are done and when you are not. If you have tests that

3

2 Test-Driven Development

fail you need to work to get them pass and if you have duplication between the test cases
or within your implementation you have to refactor to remove the duplication. Having gone
through all five stages you can now start over from the beginning by adding a new test for
the next thing that is on your todo-list.

2.3 How to write tests

When you write tests in most cases the hardest thing is the start. So having the whole system
in mind we ask ourselves the following questions [1]:

AssertionsTestsSystem

Figure 2: Asserts are the smallest component when writing tests for a software system

• Where should you start building a system? With stories you want to be able to tell about
the finished system.

• Where should you start writing a bit of functionality? With the tests you want to pass
with the finished system.

• Where should you start writing a test? With the asserts that will pass when it is done.

Figure 2 shows that assertions are the smallest, but yet most important component when
writing tests. Without them a test would not actually test anything and thus would not make
any sense at all. And without tests you would have a system on which you could not rely.

With the assertions you write you define the way you want your system to behave and react
to certain inputs. They also help you to write the tests. Kent Beck uses a very good example
on how to write the tests “backward”.

Given we want to communicate with another system over a socket. When we are done, the
socket should be closed and we should have read the string hello.

1 public c l a s s exampleTest extends TestCase {
2 public void tes tCompleteTransact ion () {
3 asser tTrue (reader . i sClosed ()) ;
4 a s s e r t E q u a l s (" h e l l o " , reply . contents ()) ;
5 }
6 }

4

2 Test-Driven Development

Having these assertions that clearly define what we expect, we can now write the rest of the
code for the test. So where does the reply come from? Clearly from the socket. And the
socket? A socket is created by connecting to a server. To connect to a server we have to open
one. So what we could write now is:

1 public c l a s s exampleTest extends TestCase {
2 public void tes tCompleteTransact ion () {
3 Server w r i t e r = Server (d e f a u l t P o r t () , " h e l l o ") ;
4 Socket reader = Socket (" l o c a l h o s t " , d e f a u l t P o r t ()) ;
5 Buf fer reply = reader . contents () ;
6

7 asser tTrue (reader . i sClosed ()) ;
8 a s s e r t E q u a l s (" h e l l o " , reply . contents ()) ;
9 }

10 }

Knowing what we want to achieve we could perform tiny logic steps backward that helped
us figuring out the right code for the test case.

2.4 Development Patterns

In Section 2.2 the development cycle clearly states that after you wrote a new test and have
seen it fail, you have to implement your code as simple as possible to get it running. But how
do you do this the best way? In this section I will present three methods that can be used to
write code to get a test pass.

2.4.1 Fake it! (’til you make it)

The easiest way to get a test running is to fake all the objects and the code structure you need.
But why do so? Why would we write code that we know will be replaced later on? There are
some reasons. First of all the fake implementation tells us, if we made any mistakes writing
the test case itself. If the test fails we have to look at it again. Are the assertions really the
ones we wanted to write? If not, we can fix them and do not have to be annoyed because we
spent a lot of time with the real implementation, just to see that the test fails. Because then we
would more likely search for the error in our implementation than in the test case itself.

Given this example we have two main effects why Fake It is powerful. The first one is the
psychological effect. Seeing a green bar feels different than seeing a red bar. Given the green
bar we know were we stand. We have the test running and can from there refactor with
confidence. The second one is scope control. The fake implementation helps to focus on one
topic at a time. If you would start with the real implementation right from the start you may
get distracted by what you code. Having the fake implementation you can write the real code
step-by-step while still knowing that you do not break any of the other tests.

5

3 A Case Study

2.4.2 Obvious Implementation

Sometimes you write a test case for a piece of code and already have the implementation
details in mind. If you know what you type and the implementation is simple then just
implement it. But you have to be aware that when using Obvious Implementation you are
“demanding perfection of yourself” [1].

If a test now fails this is a sign to shift down and use the common red/ green/ refactor devel-
opment cycle.

2.4.3 Triangulation

1. Return a
constant

2. Add
another

assertion

3. Eliminiate
redundant

code

4. Returning
a constant
is enough

Figure 3: The rules of trian-
gulation create an
infinite loop

“Triangulation is the process of determining the location of a
point by measuring angles to it from known points at either
end of a fixed baseline, rather than measuring distances to the
point directly.” [2]

When writing test cases triangulation means that it is not
enough just to check if one specific input produces one spe-
cific output. For example, if we implement a function times and
we have a test that checks whether 5.times(2) == 10 a fake
implementation of times that returns the constant 10 would be
enough to get the test pass. But when we add an assertion that
checks whether 5.times(3) == 15 returning the constant 10
would no longer suffice.

But there is a little hitch with triangulation. Figure 3 shows
how triangulation can lead to an infinite loop. Once we have
abstracted the correct implementation for times we can delete
one of the two assertions, because they are completely redun-
dant. Now it would be enough to return a constant number to
pass the test and that requires us to add an assertion and so on.

3 A Case Study

3.1 The Sendinel-Project

During the bachelor project, which is part of the graduation process of our bachelor studies
we developed a software called “Sendinel”. Sendinel aims at improving the communication
between clinics and patients in rural africa. It accomplishes that via sending text messages
and automated telephone calls to patients. This way the clinic staff is able to inform the
patients about for example vaccinations or when their lab results have arrived.

We developed Sendinel as a group of seven students at the chair of Internet Technologies and
Systems of the Hasso-Plattner-Institut in Potsdam4, Germany. The project partners were SES

4http://www.hpi-web.de

6

http://www.hpi-web.de

3 A Case Study

Astra5, SAP Research South Africa6 and the University of Capetown7. During the time of the
project we were able to deploy Sendinel in a clinic in rural South Africa [3].

The system itself is implemented as a web-application using the Python-based web-framework
Django8.

We used the approach of Test-Driven Development to build Sendinel but could only manage
to have the backend completely tested (see Section 4.5 for more information). The following
sections will give an overview about what is possible with the test suite of Django and how
you can develop applications tests-first. At the end of each category I will point out how we
applied the shown techniques while developing Sendinel and which challenges we had to
face.

3.2 Choosing the right Framework

During the planning phase of the project we had to choose the technology we want to use to
develop our system. In order to do that we came up with four main ideas.

Java As we knew our partner SAP Research in South Africa mainly uses Java as a program-
ming language for their applications, it might be useful to use this language to make it easy
for SAP to adopt the software afterwards. But as we wanted to learn something new and
everyone of the team had already written something in Java we decided against it.

.NET We also considered .NET but as we did not want to focus only on machines running
Microsoft Windows it became clear that we had to choose another language.

Ruby on Rails During the semester in that we started the bachelor project, we had a course
where we had to develop a web-application using Ruby on Rails. Therefor the idea emerged
that we could simply use Ruby on Rails for Sendinel. But the experiences we had made were
not that positive, so we also dropped this idea.

Django Some of the team members had already developed applications using Django and
the others were keen on getting to know it as it becomes more and more popular in the area
of web-development. Django also provides a test suite suitable for Test-Driven Development.
We also thought that developers might get interested in the project and are more willing to
continue our work if we utilise a young framework.

5http://www.ses-astra.com
6http://www.sap.com/about/company/research/centers/pretoria.epx
7http://www.uct.ac.za/
8http://www.djangoproject.com/

7

http://www.ses-astra.com
http://www.sap.com/about/company/research/centers/pretoria.epx
http://www.uct.ac.za/
http://www.djangoproject.com/

4 Test-Driven Development with Django

4 Test-Driven Development with Django

4.1 The Django Web-Framework

The Django web-framework has its origin at The World Company of Lawrence, Kansas. In
2005 the developers of the company created a Python-based web-framework to help them
rapidly build web-applications for their news websites. This framework than was released
under a BSD license and is now better known under the name Django [4].

4.1.1 The MVC-Pattern

The Model-View-Controller (MVC) design pattern separates the code into three distinct parts
as shown in Figure 4.

Model Stores all the data and the application logic

View Renders the interface

Controller Translates user inputs into updates that are sent to the model

Controller
(User input)

Model
(Data + logic)

View
(Interface)

Figure 4: The basic structure of the Model-View-Controller design pattern

The basic principle of the MVC-pattern is to separate responsibilities. A model class only
concerns itself with the application’s logic and data. It does not display any of the data to
the user. By contrast the view class only concerns itself with how the data is displayed in the
user interface. Finally, the controller class is only concerned with translating user input that
is received through a view into updates that it passes to the model. [5]

Separating the code into these three parts yields some benefits:

• Developers can focus on one topic at a time while writing the code

• Parts of the code can be reused more easily (e.g. one view might be used with different
models)

8

4 Test-Driven Development with Django

• User interfaces (views) can be added, removed or changed at runtime and compile time

• Multiple representations (views) of the same information (model)

Responsibilities of the model The model stores the application data in properties and pro-
vides methods to set and retrieve that data. The methods for data-manipulation are not
generic, they are specific for each application and must be known to the controller and the
view. Thus controllers in MVC are custom written to manipulate a specific model.

Responsibilities of the view Views must provide the user interface and keep it up-to-date.
A view never changes a model but it can retrieve data from it. The view listens for changes in
the model and displays them when they occur. A view itself does not evaluate inputs from
the user but forwards them to a corresponding controller which then decides what to do with
the data.

Responsibilities of the controller The controller reacts to notifications from the view. It
translates the user input it gets from the view and translates it into updates for the model.
Sometimes the controller also makes logical decisions about the input before making a change
to the model.

4.1.2 How Django implements MVC

When you create a new application with Django there are some files that have been automat-
ically created for you. For this section primarily the files models.py and the views.py are
of interest to us. Although the name views.py is a bit distracting because it is more of a file
for the controllers than for the views.

Following the principle of fat model – skinny controller most of the business logic and the data
handling goes into the models.py. The object-relational mapper of Django translates the
fields of the model classes into fields of the underlying database. Each controller can be ac-
cessed via a url that has to be specified in the urls.py. But only having these files we are
not getting any user interface for a application. This is down by creating so called templates
that correspond to the views of the MVC-pattern. But as the templates are delivered by a web
server to client’s computers these views cannot listen for changes of the models themselves.
They are snapshots of the state of the model at the time when the view was rendered by the
controller. All local variables declared in the controller are handed to the view and are not
linked to the fields of the model. To update a view a page needs to be reloaded or other
actions like an AJAX request to the server have to take place in order to fetch updated data.

Although the template files are meant to be plain HTML, Django provides a technique to
implement a certain logic into them. This is done via so-called template tags [6]. These tags
provide logic structures such as if-else-clauses and convenience wrappers for functions that
are often used when displaying data (e.g. cycle9 to dye rows of a table in alternating colors).

9http://docs.djangoproject.com/en/1.1/ref/templates/builtins/#cycle

9

http://docs.djangoproject.com/en/1.1/ref/templates/builtins/#cycle

4 Test-Driven Development with Django

When developing test-driven the separation into model, view and controller brings a great
advantage. You can also separate your test cases. You do not have to struggle with testing a
mash-up of model-, view- and controller-code, you can write different test cases focussing on
one topic at a time. This also eases the debugging process if a test fails. You exactly know in
which part of your application you have to look for the error.

4.2 Docstring Testing – using doctest

When you create a new Django application a file named tests.py is automatically created
for you. In this file you will find two examples of how to write tests. As in many other
frameworks you have the possibility to write unit tests (see Section 4.3) but Django also gives
you the ability to write your test cases as so called doctests. In the following sections these
doctests will be described and discussed in detail.

4.2.1 How testing with doctest works

When writing Python programs you can add a so called docstring to every method you im-
plement. These can then be used to help other developers. In a shell session a developer
could enter help(method_name) and the docstring would then be displayed to help him
use this method.

Doctests can be placed either directly into the docstring of a method or in the tests.py file.
Often doctests are a direct result of a Python shell session. You give a set of commands that
shall be executed and note down the expected results.

In a doctest each line starting with >>> will be executed by the Python interpreter (excluding
the >>>). This is the example that is automatically provided by Django.

1 def exampleMethd (s e l f) :
2 """
3 T e s t s t h a t 1 + 1 a lways e q u a l s 2
4

5 >>> 1 + 1 == 2
6 True
7 """

When parsing the docstring the Python interpreter will find the >>> and evaluates the fol-
lowing statement. After that it compares the produced output to the expected one from the
test case. If the produced output does not match the expected one the test case will fail.

One advantage of doctests clearly stands out. You have your tests right where your code is.
This way you are able to identify untested methods by looking at their docstrings. But there
are also some people who would see a disadvantage in that. Because now you have all your
tests widely spread through the whole project. If you rather like to have all tests in one place
you can also put them into the tests.py file.

In the file tests.py you will find a variable called __test__. This is a dictionary where
you can put the doctests as follows:

10

4 Test-Driven Development with Django

1 _ _ t e s t _ _ = { " d o c t e s t " : """
2 Another way t o t e s t t h a t 1 + 1 i s e q u a l t o 2 .
3

4 >>> 1 + 1 == 2
5 True
6 """ }

Note that there can be more values inside the dictionary. You can use meaningful names for
your keys to group and organise your tests inside the __test__ variable.

4.2.2 Problems with dependence

If you are using doctests you have to be aware of some disadvantages that come along with
them. Most of them can be overcome by using unit tests instead (see Section 4.3). In this
section I will point out some of the issues and how they can be avoided [7].

Environmental Dependence As you compare raw console output to expected values it can
easily happen that your test cases get dependent on environmental conditions. Lets assume
that we have a class called Lunch. We want to override the standard save method of Django
so that a lunch that is being created has it’s date automatically set to 12 o’clock. A doctest for
this could look like this:

1 def save (s e l f , ∗∗kwargs) :
2 """
3 Lunch a u t o m a t i c a l l y s e r v e s a t 12 o ’ c l o c k
4

5 >>> l = Lunch . o b j e c t s . c r e a t e (name = " S p a g h e t t i ")
6 >>> l
7 <Lunch : S p a g h e t t i s e r v e s a t : 12>
8 """

To get the custom class description <Lunch: Spaghetti serves at 12> we have to de-
fine another special method that is invoked in order to create this description. The method is
called __unicode__.

1 def __unicode__ (s e l f) :
2 return u"%s serves a t : %s " % (s e l f . name , s e l f . date . hour)

Now our test case depends on the implementation of the __unicode__ method. If we, for
example, change the method to return “... 12 o’clock” we did not change the way the save
method acts but the test will fail because the expected outcome does no longer match the one
produced by the Python interpreter.

To overcome the dependence of our test to the implementation of the __unicode__ method
we need to change the test case itself. In fact, we do not have to rely on any vague imple-
mentation of a method to print out objects. The better way is to test the attributes directly.
We know that we want the hour of our date to be 12 and the name of the lunch should be
“Spaghetti”. We can now rewrite the test case.

11

4 Test-Driven Development with Django

1 def save (s e l f , ∗∗kwargs) :
2 """
3 Lunch a u t o m a t i c a l l y s e r v e s a t 12 o ’ c l o c k
4

5 >>> l = Lunch . o b j e c t s . c r e a t e (name = " S p a g h e t t i ")
6 >>> l . d a t e . hour
7 12
8 >>> l . name
9 " S p a g h e t t i "

10 """

With that implementation we are no longer dependent on another method than save itself.

Besides environmental dependence in the meaning of relying on code of other methods, there
are also other traps. For example if you are developing on a UNIX-based operating system
paths are separated by a forward slash. On Windows-based systems, a test case relying on
this fact would break, because here paths are separated using a backslash.

Database Dependence Django’s object-relational manager goes through much trouble in
order to abstract from the differences of the underlying database and make them look as
similar as possible for the application above. But it is not feasible for Django to make every
supported databases look exactly the same.

So if you are writing doctests to assure that the rules you have specified for the fields of a class
are correct, you can easily run into database dependence. To adhere to the Lunch example: if
DATABASE_ENGINE in your settings.py is set to sqlite3 and you want to check that no
Lunch will be created with the name left blank, you would write a test case like:

1 def save (s e l f , ∗∗kwargs) :
2 """
3 Name may not be NULL
4

5 >>> l = Lunch ()
6 >>> l . name = None
7 >>> l . s a v e ()
8 T r a c e b a c k (most r e c e n t c a l l l a s t) :
9 . . .

10 I n t e g r i t y E r r o r : lunch . name may not be NULL
11 """

Here we define that we expect an IntegrityError to be raised when we try to save a Lunch
object with an empty name field. Maybe you are wondering why we did not had to paste the
whole stack trace. We used the “...” operator to tell the Python interpreter that we are not
interested in the whole error message. The important parts are that there actually is a traceback
and that we have found an error message stating that the name field may not be NULL.

But it is exactly this message that binds us to the SQLite database engine. If we decide to
move our application to a mysql database, for example, this test case would fail. Having the
same conditions MySQL reports us the error a little different.

IntegrityError: (1048, "Column ’name’ cannot be null")

12

4 Test-Driven Development with Django

How can we overcome this problem? We shortly take a rest and think what we want to
achieve with the test case. Is it really important what error is reported by the database? No.
For us it is enough to know that an IntegrityError was raised. We are writing atomic
tests that always do only test one thing at a time and because of that we can be sure that all
other conditions are correct. The previous test also assures that the date field is set to a valid
value automatically.

The first solution is to use a doctest directive. These directives are placed as comments on the
line that contains the test. The comment has to start with doctest: and is followed by one
or more directive names. These directive names are proceeded by either a + or a - to switch
them on or off. In our case we use the IGNORE_EXCEPTION_DETAIL directive.

1 >>> l . save () # d o c t e s t : +IGNORE_EXCEPTION_DETAIL

An alternative is to tell the doctest runner to ignore the specifics of the error message using
the ELLIPSIS marker. It relies on the ELLIPSIS option that is by default disabled in Python.
But it is enabled by the doctest runner that Django uses. You have already seen this marker
before. Remember when we wanted to ignore all the details of the stack trace? There we used
the ... operator. We can do the same to ignore the details of the IntegrityError.

1 Traceback (most r e c e n t c a l l l a s t) :
2 . . .
3 I n t e g r i t y E r r o r : . . .

Test Interdependencies The last problem with dependence I want to point out is the inter-
dependence between test cases. When writing tests it happens, that objects that were created
for one test case are being reused in another one in order to save cpu time and memory. But
reusing objects can result in coupling tests together. A more concrete example is the following:
If we are using a PostgreSQL database engine and we write a test like shown in the previous
paragraph, we can run into trouble when we are trying to reuse the Lunch object we created
in the other test case. As a side-effect the PostgreSQL database enters a broken state when
the IntegrityError is raised. Any next test case will fail as soon as it attempts database
access. This example shows us that there is no database isolation between doctest test cases.

A way to overcome this problem is to use the transaction model. By adding the lines

1 >>> from django . db import t r a n s a c t i o n
2 >>> t r a n s a c t i o n . r o l l b a c k ()

Django performs a rollback of the last transaction before the IntegrityError and the Post-
greSQL database is back to normal. This solves this specific issue of the PostgreSQL database
and is harmless to other database engines.

In general it is good to look out for two points when writing doctests:

• You should create all objects you need in a test case in the test case itself. Don’t rely on
objects that could be manipulated by other test cases. Test cases should be atomic. If
you delete one test case all others must still pass.

• If you create objects you have to guard them against collision with objects created by
other test cases. Let’s assume the name field of our Lunch object is marked as unique.

13

4 Test-Driven Development with Django

It may not be good to call the meal “Pizza” because it is likely (assuming you have a
“Pizza” addicted development team) that others also give their Lunch objects the name
“Pizza”. When the doctests are run this produces an error as the first object was already
saved to the test database. To overcome this you should use names for unique fields,
that are unlikely to be used in other tests.

4.2.3 Pros and Cons of Docstring-Testing

Doctests clearly have some outstanding advantages. As you type them directly into the doc-
string of a method they are available to every Python tool that uses the docstrings to auto-
generate help files or documentation out of them. Having your tests in the docstring provides
completely unambiguous documentation. The drawback is that you often have a long doc-
string for a rather short method. And because good and complete testing includes having
tests for border cases and all possible errors, you also have to put all these tests into the
docstring of a method and blow it up with information that is not at all costs important for
documentation purposes.

Another advantage is that you can easily re-use work you have done for example in a shell
session. You can simply copy and paste the code you typed into the docstring and have
your test ready. But here you are breaking with the development cycle of Test-Driven Devel-
opment. If you are already able to work in a shell session, it means that you already have
implemented something. Even if you type in the doctest from scratch into the docstring of
a method you break with the development cycle in the strict sense. It is just the method
signature you wrote but you wrote program code before you wrote a test.

One big disadvantage of doctests is that every docstring will count as exactly one doctest. So
if you define four tests in one docstring and one of the tests fails you won’t get an accurate
answer from the test runner which test exactly failed.

4.2.4 Evaluation of doctest

During the development of Sendinel we did not use doctest. We decided to use unit testing
and to place the test cases for each application into separate files. That way we had all test
cases that belong together in one file and did not had to look through different files if a test
case failed.

In retrospect it might have been good to have at least some doctests for documentation pur-
poses. Some methods that require explanation, because it is not clear what they exactly do
would benefit from doctests. This way we could have the explanation in form of a doctest
that on the one hand helps future developers to understand the code and that is another test
case to ensure that the method behaves correctly.

But having in mind that we want other developers to continue our work and drive the de-
velopment of Sendinel or implement it into their solutions, the problems of dependence (see
section 4.2.2) would clearly have emerged. If they for example change the database it could
have happened that test cases fail and the developer that is new to the code might have no
clue why. This is more likely an obstacle that we would put in their way than it actually would

14

4 Test-Driven Development with Django

help them. And we ourselves would have had to look out very carefully for these traps. This
in turn is very time consuming and we were very pinched for time during the development.
So as a downside of our lack in time and knowledge about the advantages of doctests when
it comes to documentation, we did not use them.

4.3 Unit Tests with Django

In Section 4.2 we discussed the possibility to have doctests in the docstring of every method.
This way of testing has the big advantage, that it does not only act as a test for the method but
also serves as an example if you extract a help or documentation file out of the docstring. We
also highlighted the problems of dependence. Especially these problems can be overcome by
using unit tests instead of doctests.

The xUnit Patterns and the Django Test-Suite Test frameworks exist for several program-
ming languages. Unit testing means testing small parts (units) of a application one at a time.
This large number of frameworks is also known collectively as xUnit [8]. These frameworks
are based on a design by Kent Beck who first implemented it in SUnit for Smalltalk. In this
section I will show how the xUnit patterns Assertion, Fixture, Exception Test and All Test are
implemented in the Django unit testing framework.

4.3.1 Assertions

As stated in Section 2 assertions are the smallest part when testing applications. They define
a set of rules for the behavior of your program code.

I have chosen two representatives for all assertions Django provides to explain the standard
functionality and the additional assertions in Django that are specific for a web-framework
[9].

assertEquals The assertEquals assertion is a wrapper to test equality. It goes along with
assertions like assertTrue or failUnlessEqual. These are assertions that are based on
the fact that you have an object or method and you want to compare it to a certain output that
you know. You could substitute each of these example assertions with a combination of the
others.

Sticking to assertEquals the common usage is to provide the assert function with two
parameters. It is good style to give the expected value as the first parameter and the object
that is being tested as the second parameter Additionally a third parameter can be given. It
is usually a string that will be shown if the test fails and that gives an explanation of what is
being tested. This message can help the developer to understand the error and to fix it.

assertRedirects As Django is a web-framework, it provides us with some special assertions
to test web specific circumstances. If you for example want to test that a certain controller
redirects to another page, you could test if the status code is equal to 302. But this requires

15

4 Test-Driven Development with Django

other developers to know the HTTP status codes. With assertions like assertRedirects
the test case is much easier to read and be understood by other developers.

Django also provides other assertions like assertTemplateUsed to ensure that a certain
template is used to render a page or assertFormError to check if forms are validated cor-
rectly.

4.3.2 Fixtures

While writing your tests you will somewhen reach a point where you create the same object
for the n-th time at the beginning of your test case. This is a) time consuming and b) code
duplication . If something changes in the way these objects have to be created, you have to
change this in every test case. Django provides two mechanisms to establish certain precondi-
tions for your tests automatically. The first one are fixtures that are sourced out into files that
are loaded into the test database before a test is run. The second one is the setUp method.
Here you can write down code that you want to be executed before each test.

Creating Fixtures using the Django Admin-Interface The easiest way to create fixtures is
to use the admin interface that Django provides. Here you have a simple graphical user
interface that helps you to insert your test data. To use this interface you first have to activate
the Django admin module and prepare the model code as described in [10].

To export the data you created into a file use the dumpdata command. For example

1 $ python manage . py dumpdata −−indent 4 > sample_data . j son

will write the whole database into a JSON [11] file. The hitch is that this will also write out all
the data used for the admin interface itself. This is data that is, in most cases, completely un-
necessary. To export only the data of a certain Django application you can add the application
name after the dumpdata command.

1 $ python manage . py dumpdata application_name −−indent 4 > sample_data . j son

To use the fixture in a test case you have to move it to application_name/fixtures/.
Django can now find the fixture file and you can load it by adding one line of code to your
test class.

1 c l a s s ExampleTest :
2

3 f i x t u r e s = [’ sample_data ’]
4

5 def testMethod (s e l f) :
6 . . .

Now the sample data we want to use for our test cases is being loaded before all tests are run.
That assures that each test has a safe base it can rely on. Every changes we make during a test
will be reverted after the test has finished. Even if a test case fails this will not affect the other
tests. This way even if two tests use the same objects, they do not affect each other. We have
overcome test interdependence (see section 4.2.2) using fixtures along with unit tests.

16

4 Test-Driven Development with Django

Naming Conventions and Mysterious Errors If you create a fixture file maybe the filename
initial_data comes to your mind because you want the data to be loaded when the test
database is initiated. But this filename is a special one. Django will load a fixture file called
initial_data automatically. This file is meant to include constant application data.

Another problem that can occur while using fixtures is that you accidentally misspell your
fixture file in the test case. Unfortunately Django does not provide a lot of feedback about
loading fixtures. The only fact indicating that something went wrong is that one or more tests
will fail. Hopefully the Django team will improve the error reporting in the future but in the
meantime you can only look out for mysterious errors like

1 DoesNotExist : [. . .] matching query does not e x i s t .

This error is more likely due to an error loading the fixture or in the fixture file itself rather
than an error in the test case.

The setUp-Method Sometimes you will find yourself in a situation where you think it is
better to create the objects you need close to the tests where you want to use them. Maybe
because you think the tests can be better understood this way or because you think a fixture
file would be too much for the one or two objects you need. In these cases you can override
the setUp method. setUp is call before every test case. Here you are also able to create
objects or execute certain commands to get the system to a state that you want to test.

The tearDown-Method The Django framework will automatically undo all database changes
you have made during a test but it can not undo, for example, temporary file creation. To
clean up after a test case and to leave the system in a proper state for the other tests you can
override the tearDown method. This method is called after every test and gives you the
opportunity to remove temporary files and to undo changes that may affect other tests.

4.3.3 Exception Test

The pattern states that exception tests work in a way that you catch the exception you expect
and pass, or fail if no exception is being raised. Python comes with a convenience wrapper
for that.

assertRaises This assertion works in a way that it takes the expected exception as the first
parameter, a callable as the second and any further parameters as parameters for the callable.
The callable is the function that shall be called by assertRaises. This only means that you
give the method name without the ().

One thing you have to be aware of when testing for exceptions is the DEBUG-mode of Django.
For example MySQL warnings are only turned into exception if DEBUG is set to True in the
settings.py. Though these warnings are still important. If the strict_mode of MySQL is
not turned on, an attempts to save an object with a blank field that has set blank = False
will only result in a warning instead of an error. These warnings would simply be ignored by
the framework and test cases that expect an exception to be raised would fail.

17

4 Test-Driven Development with Django

4.3.4 All Test

By default Django will look up every application for a models.py file and if finds one look
for the tests.py file and execute all the tests in it. You do not have to add tests to a suite
manually. All the work is done by Django. To run the complete test suite you have to execute

1 $ python manage . py t e s t

That way all tests will be run and the result will be shown to you. But the runner now also
executes all the tests of Django itself. If you want to run only the tests for your application
you can simply attach the application name to the command.

1 $ python manage . py t e s t application_name

It is even possible to run exactly one test at a time using this command structure. Assuming
we have class in the tests.py called ExampleTest and a test method called testMethod
than we could write

1 $ python manage . py t e s t application_name . ExampleTest . testMethod

The tests that shall be run are selected by calling a method called suite(). By default this
method simply executes all tests in the tests.py file or in a test module. If you want
to have a closer look on how tests can be organized and how to manipulate the suite()
method go ahead to Section 4.4

4.3.5 Evaluation of Django Unit Tests

During the development of Sendinel we completely focused on unit testing. We forced our-
selves to develop tests-first. At the beginning of the project this was hard for everyone because
it is a completely different approach to writing software. But as time passed by and we began
to rethink parts of the architecture and to refactor the code itself, these tests were extremely
helpful for us. I claim that some of the refactoring we did would have been impossible with-
out the tests. We could change major parts of the design relying on the tests that would tell us
if the changes we made have broken the system. In section 2.1 I mentioned how automated
tests reduce the stress level of application developers. When we started developing no one
could imagine how our tests would ever reduce the stress (we had to write the whole sys-
tem in three weeks) because writing them was time-consuming and thus they even put more
stress onto our shoulders. But in the end the strategy worked out. The safety net saved us
more than one time from braking the system, plus at each moment we knew if there was still
work to be done or not by just looking at the bar. If it was green everything was working and
we could go home. Otherwise some more long hours were due.

When we wrote our test cases, we stumbled over one lack in the test suite that was hard to
identify. In some way the Session object does not work the way it does outside the testing
framework. For some test cases we had to create a Session because some controller actions
did rely on it. We then tried to manipulate the object to establish a state of the system we
wanted to test but only errors were produced. We figured out that some of the actions you
can normally perform on the Session object do not work during testing. So what you have
to do is to create controller actions that will do this for you. We do not know why it did not

18

4 Test-Driven Development with Django

work the other way around but we spend a lot of time to figure out a solution to run the test
nonetheless. So if you are facing problems when working with Session in tests you might
also try to put the manipulating code into controller actions.

4.4 Organizing the Tests

In Section 4.2 I mentioned that you can either put your tests directly into the docstring of a
method if you are using doctest or you put them into the test.py file that resides in the
folder of every Django application you create. But is that all? If you are building big applica-
tion that require a lot of tests it can quickly get ugly if you put all of these tests into one file.
For Example if you have different classes like Lunch and Dinner for example you may want
to create different files for the tests like lunch_tests.py and dinner_tests.py. This is
no problem at all. Let’s assume you want to put all files that contain tests for a certain applica-
tion together in one folder named tests. You simply have to create a Python module named
tests in your application folder. That means you have to create a subdirectory and place a
file called __init__.py into it so that Python is able to recognise it as a module. But sadly
this is not everything. There is another thing we have to do before Django can find our test
cases. As Django utilises unittest.TestLoader.LoadTestCasesFromModule to find
all the tests in the modules we have to make the test cases we, for example, put into the sub-
module lunch_tests.py visible to the parent tests module. We can do so by importing
them in the __init__.py file.

1 from l u n c h _ t e s t import ∗

If you now run your tests you may recognize that something has changed. Some tests are
no longer run. This happens if you are using the __test__ variable to store doctests. As
the variable name starts with an underscore that signals that it is a private variable it is not
imported when we use a wildcard import. At this point we have to explicitly import the
variable.

1 from l u n c h _ t e s t import _ _ t e s t _ _
2 from l u n c h _ t e s t import ∗

But as you may have already recognized we are getting ourselves in big trouble if we use
doctest and have chosen to place all our doctests into the __test__ variable in the corre-
sponding *_test.py files. If we for example also import all tests for the Dinner class we
see that we have a problem.

1 from l u n c h _ t e s t import _ _ t e s t _ _
2 from l u n c h _ t e s t import ∗
3 from d i n n e r _ t e s t import _ _ t e s t _ _
4 from d i n n e r _ t e s t import ∗

The __test__ variable we imported from lunch_test is now being overwritten with the
__test__ variable of dinner_test meaning that we loose all doctests we defined for
Lunch. A quick solution for this particular problem is to move all the doctests from the
different files directly into the __init__.py file. Mention that you do not need to restrict
the dictionary tree to one level. To have a clean structure you may arrange the doctests in the
__test__ dictionary to fit the structure of your files.

19

4 Test-Driven Development with Django

The last thing I want to mention in the context of how to organize your tests is overwriting
the suite() method [12]. You can take full control over what tests are run by Django by
defining a function called suite() in the modely.py and/ or tests module. This function
is called automatically in order to create a test suite. It simply must return an object that is
applicable as an argument for unittest.TestSuite.addTest. This can for example be a
unittest.TestSuite.

1 def s u i t e () :
2 s u i t e = u n i t t e s t . T e s t S u i t e ()
3 s u i t e . addTest (LunchTest (’ t e s t _ i n i t i a l _ t i m e ’))
4

5 return s u i t e

4.5 Evaluation of the Django Test-Suite

The testing framework provided by Django is a very powerful one. You are able to organize
your tests in a way that future developers will not have to struggle with finding the right
place to put their tests. It also implements all the main xUnit patterns and thus makes it very
easy for the developer to, for example, have example test data loaded automatically before
the tests are run. It also automatically creates a test database so that you never have to worry
that any of your production data is being touched by a test.

If you are using tools like pydoc10 to generate a documentation right out of the docstrings
of your methods, doctests (see Section 4.2) are a really good way to add another help by
adding unambiguous examples right to the documentation. As a side effect these examples
are also test cases for your code. But if you are using doctests you have to be aware of several
problems that come along with them (Section 4.2.2). If these problems are getting to big and
it would be a huge effort to overcome them you might consider using unit tests (Section 4.3)
instead. Although it is still utile to at least keep doctests that are beneficial for documentation
purposes.

Unit tests do not suffer from most of the doctest problems as for example database depen-
dence. With them and special assertions for web-applications that come along with Django,
you can build reliable software that works.

When we worked on Sendinel we only utilised unit tests. Without the tests some refactor-
ing we did, especially during the last days of the project, would not have been possible. For
example we changed an attribute called way_of_communication (for further details see
the developer documentation11) to become an object. After we had written the tests that
described how we wanted the object to behave, we were able to start. First of all we imple-
mented the new object and got all tests for it running. After that we then refactored all the old
tests to fit the new implementation. Needless to say, now a lot of tests failed but these tests
did tell us exactly what parts of the code had to be refactored in order to integrate the new
way_of_communication object into Sendinel. After all tests were back to green Sendinel
was up and running again and we were satisfied and motivated to write even more tests be-
cause we had seen how they lowered the stress level during the integration (Section 2.1). At

10http://docs.python.org/library/pydoc.html
11http://sendinel.github.com/Sendinel/

20

http://docs.python.org/library/pydoc.html
http://sendinel.github.com/Sendinel/

5 Front-End Testing With Selenium

every time we knew if we were done or if there was something left to do.

The downside of Django is the fact that you are not able to create highly interactive user front
ends with the framework itself. To do so you have to use technologies such as JavaScript,
CSS and HTML5. The front-ends created with these technologies cannot be completely tested
with doctests or unit tests provided by Django. It is also very hard to test if all paths through
the application work as described in the user stories for example or if all links work correctly.

For example if you have a form inside one of your pages, you can easily write a unit test
that assures that the controller action that takes the values works correctly. You just have to
simulate a POST request and evaluate if the method output is the one you expected it to be.
But if you for example only want to allow certain characters to be typed in into the input
fields of the form, Django cannot provide you with a function to assure this. In general one
would accomplish such functionality using a simple JavaScript. But as Django is only able
to view the plain output it creates, it is not able to actually run the page in a way a browser
would do this.

In order to have your complete application tested you have to use other additional frame-
works. If you for example have used Ruby on Rails12 before, you might have seen the cucum-
ber framework13 for Behavior Driven Development. Here you can describe scenarios in plain
text, having a syntax that can almost be read like a description one would normally write
down.

In section 5 the Selenium test framework is being described as an add-on to the Django test
suite. Selenium gives you the possibility to test your web-applications automatically on dif-
ferent browsers and in different environments. It has a very simple syntax and the test cases
can also be easily understood by non-programmers.

5 Front-End Testing With Selenium

When we had a look at the test suite of Django we had to ascertain that neither unit tests
nor doctests are very useful when it comes to testing flows through the application. Here
different pages and multiple controllers are involved. Writing tests for these use cases was
circuitous and hard to maintain for future developers. Another problem is that if you are
using JavaScript to create highly interactive user interfaces you cannot test this code with the
Django test suite. Therefore we had to look out for another test framework that overcomes
these gaps and in this case we found the Selenium framework.

At this point I already want to point out that Selenium is not useful to test whether all links
are working correctly. This use case is better covered by crawlers that one after another follow
every link of the web-application and check whether it works as expected or not.

12http://rubyonrails.org/
13http://cukes.info/

21

http://rubyonrails.org/
http://cukes.info/

5 Front-End Testing With Selenium

5.1 Why use Selenium

Selenium is especially good for functional tests where certain inputs are given to the system
and the resulting output is checked against a specification sheet for example. This so called
black box testing abstracts from the underlying implementation and concentrates fully on
how the user sees the system. You can write unit tests for every component in the backend
and verify that these components work together correctly by taking advantage of Selenium.

You are now also able to test the JavaScript code you have written in the front end by specify-
ing certain workflows and asserting the output you expect. For example if you expect a script
to open a new window and create a div element in that window, you can use the Selenium
IDE to create that workflow and to add the assertions. This test case will fail as long as the
JavaScript code does not work properly and will pass if everything is implemented correctly.

If you are using Scrum as a development process, you define the acceptance criteria to your
software in user stories. These stories specify exactly what outcome is expected when a user
acts a certain way [13]. With Selenium you can map these stories directly to your tests. This
helps you to assure that your software does not only behave the way you expected it to be-
have, but it also works as you defined it in the user stories you created together with your
stakeholder.

5.2 The design of Selenium

Selenium is a test framework for web-applications. The Selenium tests run directly in the web
browser, thus where the user would interact with the application. It runs on most modern
browsers like Mozilla Firefox, Safari or Internet Explorer. There are even plans to bring it to
the Safari browser of the iPhone. Supporting these browsers Selenium runs under Windows,
Linux or MacOS X and can therefore be called platform independent.

Supporting all these browsers makes it possible for Selenium to test web-applications con-
cerning their compatibility to a certain browser.

Selenium mainly consists of four modules as shown in Figure 5. The heart of Selenium is the
Selenium Core. It provides a JavaScript library to simulate user interaction on webpages and
abstracts from browser specific implementation details of JavaScript. Thus all other compo-
nents are build on top of it.

The Selenium IDE [14] is an extension for the Firefox browser that can be used to record tests
directly in the browser and to replay them afterwards. As it is an extension only available for
the Firefox browser it is coloured grey in Figure 5. In addition tests can be exported so that
they can be used with Selenium Remote Control or the Selenium Grid. It also provides the
ability to set breakpoints to debug your application in your browser.

22

5 Front-End Testing With Selenium

Selenium IDE

Selenium Grid

Selenium
Remote Control

Selenium Core

export

export

uses

usesuses

Figure 5: The four main modules of Selenium [15]

The Selenium Remote Control module provides developers to outsource their Selenium tests
to other machines. For example if a test suite is run, the unit tests connect via HTTP to a
Selenium Remote Control Server and transfer the commands needed to run the tests. For
each session a browser is then launched by the Remote Control Server and the tests are run.

Selenium Grid was build to reduce the time needed to execute all Selenium tests and to add
more transparency to the underlying infrastructure. Here the Selenium tests are distributed
to multiple Selenium Remote Controls to run in parallel. But in advance to Selenium Remote
Control itself, the test suite that runs the tests does not need to care about how the tests
are distributed. Here the Selenium Grid Server also called Selenium Hub comes into play.
The tests are now only send to the Selenium Grid Server which then distributes them using
Selenium Remote Control.

As Selenium tests can be easily exported to different programming languages like Python or
Java for example and due to the ability to run these tests remotely they can be easily integrated
into an ANT-Build or a continuous integration environment [16].

5.3 Selenese

What is Selenese? Put simply: Selenese is the language of Selenium. But it does not require
a web developer to learn a new programming language. Selenium tests are displayed as
a simple three column table in HTML. Every action is put in a row. Each row follows the
structure of:

| Command | Target | Value |

23

5 Front-End Testing With Selenium

meaning that the first column holds the command that shall be executed by Selenium fol-
lowed by a reference to the target on which the command will be executed. Targets are
HTML elements that are referenced by their name tag. The last column contains the value
that is handed to the command as a parameter. If you for example have a login form and you
want to enter the name philipp.giese into the input for the username a Selenese script
for that could look like the following.

1 < t r >
2 <td>type</td>
3 <td>username</td>
4 <td>phi l ipp . g i e s e</td>
5 </ t r >

Having this structure brings two main advantages. You do not have to be a programmer to
understand the test cases and it takes developers not long to understand how to write tests.
Every written test produces a graphical output if you open the file in a browser.

5.4 Evaluation of Selenium

As we had little time developing Sendinel we could only become acquainted with one test-
ing framework. This was the Django test suite. The front-end was only tested by ourselves
manually assuring that Sendinel behaves like defined in the user stories.

In retrospect Selenium would have been a big help for us, as we had to assure that the look
and feel of Sendinel is equal in all browsers. The Selenium tests would have been very time
saving. We could have set up a Selenium Remote Control Server that would have run all the
tests automatically whenever a new build was run by the continuous integration server. That
way we could have assured that all user stories are implemented into Sendinel.

The Selenium IDE provides a great interface to record the tests but at this point there already
has to be some kind of user interface on which you can perform certain actions. If you want
to develop your application test-driven and thus as the first step construct Selenium test cases
from the user stories, even before starting to write the tests and the code of the backend you
have to write them in Selenese. But as Selenese is easy to learn even for non-developers this
should be no big hurdle.

So we see that Selenium perfectly fits into Test-Driven Development. It even might be easier
to write the Selenium tests because they can be directly derived from user stories. In contrast
this is not given for backend testing as the user might never interact directly with the backend
but only through the front end.

24

6 Conclusion

6 Conclusion

Test-Driven Development may seem inappropriate to a lot of developers at first glance. I think
most of them are scared of the fact that they are not allowed to start coding immediately if an
idea comes to their mind. Writing the tests in the first place forces them to rethink everything
and to define guidelines for their code before they write it. In fact this is annoying if you
are not used to it. I can tell that I was not pleased when the decision was made to develop
test-driven. I only thought of the little time we had and how time-consuming it would be to
always first write the tests, even if you already had the implementation in mind. But after only
three months of development I am completely retuned. The advantages of having automated
tests cannot be dismissed. During the last months I did a lot of refactoring that would not
have been feasible without the tests that told me if what I was doing was working or not.

The Django test suite was a great help for us. You can easily organise your tests and the
variety of assertions ease writing tests a lot. Also Django is very good documented and the
community is rapidly growing. This way we were always able to quickly solve problems that
occurred. As Django is Python-based you can also benefit from doctests to either have test
cases directly where your code is or to have unambiguous examples if you extract a docu-
mentation out of the docstrings of your methods.

Unfortunately the lack in time rendered it impossible for us to become acquainted in two
testing environments. So we could not add Selenium tests for our front-end. With these tests
the complete System would have been developed in a test-driven way. This in turn would
have lowered the stress level inside the team because during the development most of the
errors were produced by untested front-end code.

Concluding I can say that after the end of the project I have become a fan of Test-Driven
Development and Django. Yes, you have to spend time in writing tests and yes, their are
times when you have to force yourself to first write a test and then the actual code but it is
worth it! The bigger an application gets the more errors can be produced and the automated
tests help you to avoid these errors right from the start.

25

References

References

[1] Beck, Kent: Test-Driven Development – By Example.
Addison Wesley, 2003.

[2] Triangulation, June 2010.
http://en.wikipedia.org/wiki/Triangulation, visited on 15.06.2010.

[3] Frister, Michael, Philipp Giese, Patrick Hennig, Thomas Klingbeil, Daniel Moritz, Johan
Uhle, and Lea Voget: The sendinel-project, June 2010.

http://www.sendinel.org, visited on 16.06.2010.
[4] Django, June 2010.

http://en.wikipedia.org/wiki/Django_%28web_framework%29, visited on
23.06.2010.

[5] Moock, Colin: Essential ActionScript 2.0 – Object-Oriented Development with ActionScript
2.0.

O’Reilly Media, 2004.
[6] Django template tags, June 2010.

http://docs.djangoproject.com/en/1.1/ref/templates/builtins/mpty
, visited on 15.06.2010.

[7] Tracey, Karen M.: Django 1.1 Testing and Debugging.
Pack Publishing Ltd., 2010.

[8] xunit, June 2010.
http://en.wikipedia.org/wiki/XUnit, visited on 16.06.2010.

[9] Django assertions, June 2010.
http://docs.djangoproject.com/en/1.2/topics/testing/#assertions,

visited on 16.06.2010.
[10] Django admin module, June 2010.

http://docs.djangoproject.com/en/dev/ref/contrib/admin/, visited on
16.06.2010.

[11] Javascript object notation, June 2010.
http://en.wikipedia.org/wiki/JavaScript_Object_Notation, visited on

16.06.2010.
[12] Python unittest, June 2010.

http://docs.python.org/library/unittest.html, visited on 22.06.2010.
[13] Hennig, Patrick: Software development with scrum in the context of a small project.

Bachelor’s thesis, Hasso-Plattner-Institut, 2010.
[14] Selenium ide, June 2010.

http://release.seleniumhq.org/selenium-ide/, visited on 21.06.2010.
[15] Kain, Michael: Selenium – Web-Applikationen automatisiert testen.

Open Source Press, 2008.
[16] Frister, Michael: Continuous integration – practices and tools used in the sendinel project.

Bachelor’s thesis, Hasso-Plattner-Institut, 2010.

26

http://en.wikipedia.org/wiki/Triangulation
http://www.sendinel.org
http://en.wikipedia.org/wiki/Django_%28web_framework%29
http://docs.djangoproject.com/en/1.1/ref/templates/builtins/
http://en.wikipedia.org/wiki/XUnit
http://docs.djangoproject.com/en/1.2/topics/testing/#assertions
http://docs.djangoproject.com/en/dev/ref/contrib/admin/
http://en.wikipedia.org/wiki/JavaScript_Object_Notation
http://docs.python.org/library/unittest.html
http://release.seleniumhq.org/selenium-ide/

	Introduction
	What does Test-Driven Development mean
	Contributions

	Test-Driven Development
	The word ``Test''
	The Development Cycle
	How to write tests
	Development Patterns
	Fake it!
	Obvious Implementation
	Triangulation

	A Case Study
	The Sendinel-Project
	Choosing the right Framework

	Test-Driven Development with Django
	The Django Web-Framework
	The MVC-Pattern
	How Django implements MVC

	Docstring Testing
	How testing with doctest works
	Problems with dependence
	Pros and Cons of Docstring-Testing
	Evaluation of doctest

	Unit Tests with Django
	Assertions
	Fixtures
	Exception Test
	All Test
	Evaluation of Django Unit Tests

	Organizing the Tests
	Evaluation of the Django Test-Suite

	Front-End Testing With Selenium
	Why use Selenium
	The design of Selenium
	Selenese
	Evaluation of Selenium

	Conclusion
	Bibliography

